
Transition behaviour from de Gennes-type motion to Rouse's of a polymer chain in fixed

network

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1975 J. Phys. A: Math. Gen. 8 417

(http://iopscience.iop.org/0305-4470/8/3/013)

Download details:

IP Address: 171.66.16.88

The article was downloaded on 02/06/2010 at 05:05

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/8/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 8, No. 3, 1975. Printed in Great Britain. 0 1975 
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Abstract. De Gennes’ theory on the Brownian motion of a polymer chain in the presence 
of fixed obstacles is generalized so as to take into account the concentration of obstacles. 
The molecular weight dependences of the characteristic relaxation time and the self- 
diffusion constant of the chain are found to change continuously from de Gennes-type to 
Rouse’s as the concentration of obstacles decreases. 

1. Introduction 

In the problem of entanglement effect in polymeric chain systems, an illuminating theory 
has been proposed by de Gennes (1971). He discussed a Brownian motion of a chain 
trapped inside a fixed three-dimensional network such as a polymeric gel. He presented 
an idea of tube restriction to express the topological constraint that the chain cannot 
intersect other chains constituting the network. The idea of the tube restriction had 
already been proposed by Edwards (1967b) in the discussion of rubber elasticity of 
highly-entangled chain systems, but not applied to the dynamic problems such as the 
viscoelastic properties. 

A two-dimensional version of the system considered by de Gennes is illustrated in 
figure 1. Here circles denote the obstacles, eg, chains penetrating the plane perpendicu- 
larly. The chain can move freely between the obstacles, but cannot cross any of them. 
The only allowed motion of the chain is thus the ‘reptative’ motion inside a certain 
tube composed of obstacles. 

De Gennes described this motion by the migration process of ‘defects’, which express 
the stored length of the chain, along the tube axis. As a result he showed that many 
characteristic features in the dynamic properties of the chain are quite different from 
those in the free space : the self-diffusion constant D, of the chain is proportional to N - 2  
( N  denoting the degree of polymerization), and the longest relaxation time T of the time 
correlation function of the end-to-end vector is to N 3 .  One should recall that in the 
free space, these quantities are proportional to N -  and N2, respectively as predicted 
by the Rouse theory. 

In spite of some specific assumptions such as the defects, de Gennes’ theory seems to 
be quite general and to describe correctly the molecular weight dependence of these 
quantities. However, it must be noted that his theory holds only in the case of a high 
density of obstacles. When the mean distance between the obstacles is comparable with 
the mean end-to-end distance, the concept of the tube restriction becomes meaningless. 
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Therefore de Gennes’ theory will break down at some point as the concentration of 
obstacles or the chain length decreases, and a transition behaviour will be observed in the 
molecular weight dependence of DG and 5. Unfortunately, his theory does not take into 
account the concentration of obstacles and hence cannot predict the range of applicability 
of his theory. 

A computer experiment has been worked out by Doi (1973) to examine this transition 
behaviour. A chain is placed on a two-dimensional plane and obstacles are set up 
regularly at the lattice points of the square lattice with lattice constant d. The diffusion 
constant and the longest relaxation time were observed as functions of N and d. A 
diffusive transition behaviour was observed in the N dependence of these quantities. 

In this paper, a theory is developed to describe this transition behaviour from de 
Gennes-type motion to Rouse’s. We shall first modify de Gennes’ theory so as to take 
into account explicitly the mean length ( L )  of the tube enveloping the chain. Then ( L )  
is determined as a function of the chain length and the concentration of obstacles. The 
transition behaviour in the molecular weight dependence of DG and 5 is explained in 
terms of the change in N dependence of ( L )  as the concentration of obstacles decreases. 

Although the present theory is an extension of de Gennes’ theory to the case of lower 
concentration of obstacles, our results conform to the Rouse theory in the limit of 
infinite dilution of obstacles. The transition behaviour observed by the computer 
experiment will be shown to be well reproduced by this interpolation formula. 

2. Generalization of de Gennes’ theory 

In this section we shall derive de Gennes’ results in a generalized manner so as to take 
into account the concentration of obstacles. 

Consider a chain confined inside a tube of radius a. The central axis of the tube is 
denoted by R(s), where s is the curvilinear length along the tube axis measured from some 
origin. Here it should be remarked that in general the tube axis cannot be identified by a 
single parameter s, because the chain ends can penetrate the wall of the tube and can go 
into another tube. However, this is not important in our theory because the following 
discussion is concerned only with the shape of the initial tube in which the chain is 
trapped at time t = 0. In that case R(s) can be determined uniquely. 

We represent the position of the nth monomer r, by its curvilinear coordinate s, 
along the tube axis, and the vector U, perpendicular to the axis : 
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The stochastic motion of the chain is described by a set of Langevin equations for s, 
and U, and was discussed in a previous paper (Doi 1974). As a result it can be shown that 
vector U, and the curvilinear separation s,-s, between any two monomers n and m 
fluctuate rapidly. Therefore in the discussion of long time scale behaviour, these 
quantities may be assumed to have their mean values, ie, 

U, = ( U , )  = 0 and s,-s, = (s,-s,) = (L) (n -m) /N:  
hence 

s, = ( n / N - i ) ( L )  + sc and r, = R(s,) (2) 

where ( L )  is the mean value of sN -si and s, is the curvilinear coordinate of the (N/2)th 
monomer called the centre monomer. We call ( L )  the mean tube length because it is 
equal to the tube length enveloping the chain. In this approximation the conformation 
of the chain is determined by one parameter s, and the motion of the chain is treated as a 
uniform diffusion process with constant end-to-end separation ( L )  along the tube axis. 

The probability distribution function fors, at timet obeys theusualdiffusionequation : 

The diffusion constant D, is proportional to N -  ’ because the friction constant for the 
uniform translation along the tube axis is proportional to N.  

Up to this point our discussion is essentially the same as de Gennes’. The only 
difference is that de Gennes has assumed ( L )  to be equal to N b  (b  denoting the bond 
length), whereas we regard ( L )  as an adjustable parameter determined by the chain 
length Nb and the concentration of obstacles. This is a necessary modification if we are 
going to treat the case of intermediate concentration of obstacles. What we discuss in the 
following is how this modification affects the final results. 

Let us first consider the time correlation function of the end-to-end vector P. Since 
the shapes of different tubes have no correlation with each other, the correlation between 
fit), the vector at time t, and P(0) vanishes when the chain disengages from the initial 
tube, ie, when Js,(t)-sc(0)l becomes greater than ( L ) / 2 .  Therefore the longest relaxation 
time of (p(t). P(0)) can be estimated by the time during which the centre monomer 
diffuses to a distance ( L ) / 2  along the tube axis. From equation (3) this is estimated as 

(4) 

When the concentration of the obstacles is sufficiently high, ( L )  is, presumably, pro- 
portional to N and thus t cc N3,  which coincides with de Gennes’ result. 

Next we consider the diffusion constant of the chain. Since the dimension of the chain 
is finite, the overall diffusion constant DG (more specifically, the diffusion constant of the 
centre of mass) can be evaluated from the mean square displacement of a certain monomer 
in a sufficiently long time interval compared to t. Therefore we may estimate DG from 
the mean square displacement of the centre monomer : 

T a ( L ) 2 / D ,  a N(L) ’ .  

( ( r N / 2 ( t ) - r N / 2 ( 0 ) ) 2 )  = 4DGt ( t  >> 7). ( 5 )  

Since the centre monomer is confined in the initial tube during the time interval T, its 
motion is restricted by the initial tube during this time interval. Hence there is a strong 
memory effect in the motion of the centre monomer during t. On the other hand, for 
t k T ,  we may assume that the motion of the centre monomer has no correlation with 
that for t 6 T. Thus for simplicity, we may regard the Brownian motion of the centre 
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monomer as a random walk in which the centre monomer makes t/r independent steps 
during the time interval t. The mean square displacement of each step is estimated by 
the mean square separation between the chain end and the centre monomer, ie, 
( ( r N  - rNi2)’) = Nb2/2 .  Therefore the left-hand side in equation (5 )  is estimated as 

hence we have 

D, cc Nb2/.r cc ( L ) - 2  (7) 
Thus our problem is reduced to determining (L) as a function of the concentration 

of obstacles. This is done in the subsequent sections. 

3. Defmition of tae mean tube lengtJ~ 

Conceptually, the tube represents the smeared effect of obstacles. However, it is not 
easy to give a clear definition of the tube. As an example, let us compare the two cases 
shown in figure 2. In case (a), the portion A-B-C should be included in the tube length, 
but in case (b), it must be excluded. To distinguish these two cases, introduction of some 
topological invariants, such as discussed by Edwards (1967a, 1968), will &e necessary. 
However, if such definition of the tube is employed, the statistical calculation of the 
mean tube length becomes very difficult. 

(0) 

Fgre  2. 

Here we employ a simple definition of the tube length. Instead of considering 
obstacles, we imagine a set of spheres whose centres are continuously located dong the 
chain. The radius of the sphere a is determined by the concentration of the obstacles. 
The tube is defined as the region occupied by these spheres (see figure 3). We shall 
calculate the mean volume of this region and dividing it by nu2, the cross section of the 
tube, we estimate the mean tube length. 

The above definition of the tube, of course, does not take into account the difference 
between the two cases (a) and (b) shown in figure 2. Nevertheless, we expect that it 
reflects the essential aspect of the concentration dependence of the mean tube length. 
This may be understood if we compare the two cases illustrated in figure 3. In the high 
concentration case (a), (L) will be proportional to N ,  on the other hand in the low 
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Figure 3. 

concentration case (b), ( L )  will be proportional to the mean end-to-end distance, ie, 
( L )  a J N .  

It should be stressed that the mean tube length defined above, or the mean tube 
volume, can be calculated exactly. Apart from our pertinent interest, a similar problem 
may arise in other fields of polymer science. For example, in polyelectrolyte theory, 
counterions are considered to be condensed in some potential trough around the 
polymer chain (Osawa 1971). The volume of the potential trough is just the same as our 
tube volume. To the author’s knowledge, such a calculation has not yet been carried out. 
Therefore the following section is devoted for this purpose. 

4. Mean tube volume 

Consider a Gaussian chain starting from some fixed point R. The position of the nth 
monomer is denoted by r(n). We regard n as a continuous parameter and assume a 
Wiener measure for the functional probability of finding a conformation r(n) : 

P[r(n)] = Nexp[- JoNdn&($)*)(r(O)-R). 

For a given conformation of the tube, we introduce a function E(ro ; R, [r(n)]) ,  which 
takes unity when a point ro is inside the tube and zero otherwise, ie, 

1 if there exists n such that Iro -r(n)l < a 
0 otherwise. (9) 
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The average in equation (1 1) should be taken over the distribution function (8) : 

(12) 

I t  is possible to calculate directly the functional integral (12) following the method of 
Edwards and Freed (1969). However, an anaiogy with the Brownian motion problem 
offers a simple way to reach the result. 

Equation (8) indicates that function r(n) can be regarded as a trajectory of a Brownian 
particle starting from R at ‘time’ n = 0. Then the average E(ro, R) can be regarded as 
the probability that the Brownian particle goes into the spherical region Ir-rol < a at 
least once during the time interval N. This probability is equal to the adsorption 
probability of the Brownian particle on the complete absorption surface of the sphere. 

Let us introduce a Green function G(r, R, n), the probability of finding the Brownian 
particle starting from R, at point r and time n. It obeys the diffusion equation 

_-_ b2V2G = 6(r-R)6(n) 
a n  6 

together with the sink boundary condition 

G(r, R, n) = 0 at Ir-r0I = a. (14) 
Since the diffusion constant of the Brownian particle is equal to b2/6, the adsorption 
probability is expressed as 

E(ro,R) = JoNdnIdS.xVG b2 

where d S  is a surface element vector of the sphere Ir -rol = a, directing outward. 
Let us note that E(ro, R) is a function of ro - R. Therefore we may put the centre of 

the sphere ro at the origin and replace the integral over ro in equation(11) by that over the 
starting point : 

(v) = f ~ ~ R E ( o ,  RI. 

We consider a function W(r, n) defined by 

W(r, n) = 

By use of W(r, n), ( V )  is expressed as 

d3RG(r, R, n). I 
( V )  = /oNdnJdS.[z)VW(r,n). 

From equations (13), (14) and (17), W(r, n) satisfies the equation 

together with the conditions 

W(r, n) = 1 a t n = O  

W(r, n) = 0 at the surface Irl = a. 
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This set of equations is a familiar one in the diffusion problem (Crank 1956). Hence we 
can immediately write down the solution as 

r r  

where 

Thus the mean volume is obtained as 

One must note that in deriving (23) we have taken into account only those particles 
starting outside the sphere, ie, [RI > a. If on the other hand [RI < a, E(0, R)  is identically 
unity and this adds a term of the volume of the sphere 4na3/3 to (V). However, in 
evaluating the mean tube length of the pertinent entanglement problem, such a term 
should be suppressed because it represents the volume of the two half-spheres attached 
to the chain ends. (Moreover the term 4na3/3 gives an unphysical tube length when 
a >> J(Nb).)  Hence we obtain the mean tube length as 

( L )  = ( v ) / n a 2  = 4J($)bJN+xN.  2b2 

This equation indicates that the N dependence of the mean tube length changes 
following the tube radius, a, in such a way as 

for a << J ( N b 2 )  
for a 2 J(Nb2) .  

Such behaviour is what we have expected in the foregoing section. 
Here a note should be made concerning the applicability of equation (24). Following 

equation (24), ( L )  can exceed the chain length N b  and can become infinitely large when 
a is very small. This inconsistency arises from the Gaussian chain assumption employed 
in our calculation. The Gaussian chain assumption holds only when one is concerned 
with the scale larger than the bond length b. Therefore equation (24) should not be 
applied to the case a 5 b. 

5. Comparison with the Monte Carlo results 

Substituting equation (24) into (4) and (7), we have 

z = AN2(1 + ~ J ( z / ~ ) Z J N ) ~  

DE = BN( 1 + * J ( X / ~ ) Z J N ) ~  
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where U = b /a  and A and B are constants independent of N. Equations (26) and (27) 
indicate that when clJN >> 1 ,  T and DG are proportional to N 3  and N-' respectively, in 
accordance with de Gennes' theory, and when a J N  6 1, they are respectively pro- 
portional to N 2  and N - ', which recovers Rouse's theory. Of course since equations (4) 
and (7 )  were derived starting from the tube model, the recovery of the Rouse theory 
may be a fortuitous thing. However, we expect that these equations describe the quali- 
tative feature of the transitional behaviour from de Gennes-type motion to Rouse's. 

Let us compare equations (26)  and (27)  with the result of the computer experiment. 
Here it should be remembered that the computer experiment was performed for the two- 
dimensional case and thus cannot be compared directly with the present theory for the 
three-dimensional case. The modification of the present theory to the two-dimensional 
case is discussed in the appendix. The resulting expression for ( L )  is much more com- 
plicated, but the qualitative feature is almost the same as for the three-dimensional case. 
In fact for relatively small values of a J N ,  (L) is well approximated by 

( L )  = 1.8bJN+0.30Nb2/a (bJNIa 6 6.0). (28)  

The functional form of equation (28)  is just the same as (24). Hence the modification 
for the two-dimensional case solely changes the numerical factor before aJ N in equations 
(26) and (27)  from ;,,/(n/6) to 0.30/1.8 = 0-17. 

With this in mind, let us rewrite equations (26)  and (27)  as 

T 1/2/N = A'( 1 + 0 .17aJN)  

(DGN)-  = B'( l+O. l7aJN):  

then plots of T ' / ~ / N  against N' /2  and (D,N)-'/' against N'/' should be straight lines. 
The observed data are in fact on straight lines as shown in figures 4 and 5 .  From this 
plot a is obtained and listed in table 1 .  

If we take the tube radius, a, to be equal to d/2 ,  the half-distance between the 
neighbouring obstacles, a is equal to 1.0 and 0.67 for d/b = 2 and 3 respectively. These 
values compare well with the observed ones. Furthermore, since a is proportional to d, 

2 4 6 8 
N 112 

F i e  4. Monte Carlo results for the self-diffusion constant D,. 0 : d/b = 2; : d/b = 3. 
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t 
Figme 5. Monte Carlo results for the longest relaxation time T of the time correlation 
function of the end-to-end vector. 0 : d/b = 2 ;  : d/b  = 3. 

Table 1. Values of K = b/a obtained from the plots of T and D, 

dlb = 2 d /b  = 3 Ratio 

From 7 0.93 0.54 1.7 
FromD, 1.0 0.56 1.8 

the ratio a(d/b = 2)/a(d/b = 3) should be 3. The observed ratios also agree relatively 
well with these values as is shown in table 1. 

6. Conclusions 

We have generalized de Gennes’ theory to the case of low concentration of obstacles by 
explicitly taking into account the mean length of the tube in which the chain is trapped. 
The result is found to conform to Rouse’s theory for sufficiently low concentration of 
obstacles. It is shown that a diffusive transition occurs in the molecular weight depend- 
ence of the diffusion constant and the characteristic relaxation time from de Gennes’ 
prediction to Rouse’s. The theory has been shown to fit well with the data ofthe computer 
experiment. 

Appendix. Tube length of the two-dimensional case 

Equation (19) with (20) for the two-dimensional case has already been solved in the 
diffusion problem (Crank 1956). Replacing the diffusion constant by b2/4, we have 
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Hence the mean volume (or the area in this case) of the tube is 

where 5 = bJ(N)/a.  
The mean tube length is now defined by (L) = ( V) /2a .  We have calculated ( L ) / a  

as a function of 5 numerically. The result is shown in figure 6, where (L)/a< is plotted 
against for convenience of comparison with the three-dimensional case. It  is observed 
that (L)/cr( is well approximated by the broken line shown in figure 6 for 5 5 6.0, which 
leads to equation (28). 

L 
I I I I 1 

2 6 10 
F 

Figure 6. Mean tube length (L) is shown for the two-dimenional (curve A) and three- 
dimensional (curve E) cases. Here < = b d N / a .  
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